Package: DataVisualizations 1.3.3

DataVisualizations: Visualizations of High-Dimensional Data

Gives access to data visualisation methods that are relevant from the data scientist's point of view. The flagship idea of 'DataVisualizations' is the mirrored density plot (MD-plot) for either classified or non-classified multivariate data published in Thrun, M.C. et al.: "Analyzing the Fine Structure of Distributions" (2020), PLoS ONE, <doi:10.1371/journal.pone.0238835>. The MD-plot outperforms the box-and-whisker diagram (box plot), violin plot and bean plot and geom_violin plot of ggplot2. Furthermore, a collection of various visualization methods for univariate data is provided. In the case of exploratory data analysis, 'DataVisualizations' makes it possible to inspect the distribution of each feature of a dataset visually through a combination of four methods. One of these methods is the Pareto density estimation (PDE) of the probability density function (pdf). Additionally, visualizations of the distribution of distances using PDE, the scatter-density plot using PDE for two variables as well as the Shepard density plot and the Bland-Altman plot are presented here. Pertaining to classified high-dimensional data, a number of visualizations are described, such as f.ex. the heat map and silhouette plot. A political map of the world or Germany can be visualized with the additional information defined by a classification of countries or regions. By extending the political map further, an uncomplicated function for a Choropleth map can be used which is useful for measurements across a geographic area. For categorical features, the Pie charts, slope charts and fan plots, improved by the ABC analysis, become usable. More detailed explanations are found in the book by Thrun, M.C.: "Projection-Based Clustering through Self-Organization and Swarm Intelligence" (2018) <doi:10.1007/978-3-658-20540-9>.

Authors:Michael Thrun [aut, cre, cph], Felix Pape [aut, rev], Onno Hansen-Goos [ctr, ctb], Quirin Stier [ctb, rev], Hamza Tayyab [ctr, ctb], Luca Brinkmann [ctr, ctb], Dirk Eddelbuettel [ctr], Craig Varrichio [ctr], Alfred Ultsch [dtc, ctb, ctr]

DataVisualizations_1.3.3.tar.gz
DataVisualizations_1.3.3.zip(r-4.5)DataVisualizations_1.3.3.zip(r-4.4)DataVisualizations_1.3.3.zip(r-4.3)
DataVisualizations_1.3.3.tgz(r-4.4-x86_64)DataVisualizations_1.3.3.tgz(r-4.4-arm64)DataVisualizations_1.3.3.tgz(r-4.3-x86_64)DataVisualizations_1.3.3.tgz(r-4.3-arm64)
DataVisualizations_1.3.3.tar.gz(r-4.5-noble)DataVisualizations_1.3.3.tar.gz(r-4.4-noble)
DataVisualizations_1.3.3.tgz(r-4.4-emscripten)DataVisualizations_1.3.3.tgz(r-4.3-emscripten)
DataVisualizations.pdf |DataVisualizations.html
DataVisualizations/json (API)
NEWS

# Install 'DataVisualizations' in R:
install.packages('DataVisualizations', repos = c('https://mthrun.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mthrun/datavisualizations/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

7.41 score 7 stars 7 packages 117 scripts 621 downloads 61 exports 36 dependencies

Last updated 22 days agofrom:5983bfbd72. Checks:OK: 1 ERROR: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-win-x86_64ERROROct 29 2024
R-4.5-linux-x86_64ERROROct 29 2024
R-4.4-win-x86_64ERROROct 29 2024
R-4.4-mac-x86_64ERROROct 29 2024
R-4.4-mac-aarch64ERROROct 29 2024
R-4.3-win-x86_64ERROROct 29 2024
R-4.3-mac-x86_64ERROROct 29 2024
R-4.3-mac-aarch64ERROROct 29 2024

Exports:ABCbarplotBimodalityAmplitudecbind_fillCCDFplotChoroplethmapClassBarPlotClassBoxplotClassErrorbarClassMDplotClassPDEplotClassPDEplotMaxLikeliClassplotCombineColsCombineRowsCrosstableDensityContourDensityScatterDualaxisClassplotDualaxisLinechartFanplotGoogleMapsCoordinatesHeatmapInspectBoxplotsInspectCorrelationInspectDistancesInspectScatterplotsInspectStandardizationInspectVariableJitterUniqueValuesMAplotMDplotMDplot4multiplevectorsMeanrobustMultiplotOpposingViolinBiclassPlotOptimalNoBinsParetoDensityEstimationParetoRadiusPDEnormrobustPDEplotPiechartPixelmatrixPlot3DPlotGraph2DPlotMissingvaluesPlotProductratioQQplotrbind_fillRobustNorm_BackTrafoRobustNormalizationROCShepardDensityScatterSheparddiagramSignedLogSilhouetteplotSlopechartstat_pde_densityStatPDEdensityStdrobustWorldmapzplot

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrpracmaR6RColorBrewerRcppRcppArmadilloreshape2rlangscalesspstringistringrtibbleutf8vctrsviridisLitewithr

A Quick Tour in Data Visualizations

Rendered fromDataVisualizations.Rmdusingknitr::rmarkdownon Oct 29 2024.

Last update: 2023-09-22
Started: 2018-06-19

Readme and manuals

Help Manual

Help pageTopics
Visualizations of High-Dimensional DataDataVisualizations-package DataVisualizations
Barplot with Sorted Data Colored by ABCanalysisABCbarplot ABC_screeplot
Accounting Information in the Prime Standard in Q3 in 2019 (AI_PS_Q3_2019)AccountingInformation_PrimeStandard_Q3_2019 AI_PS_Q3_2019
Bimodality AmplitudeBimodalityAmplitude
A categorical Feature.categoricalVariable
plot Complementary Cumulative Distribution Function (CCDF) in Log/Log uses ecdf, CCDF(x) = 1-cdf(x)CCDFplot
Plots the Choropleth MapChoroplethmap plotChoroplethMap
Postal Codes and AGS of Germany for a Choropleth MapChoroplethPostalCodesAndAGS_Germany
ClassBarPlotClassBarPlot
Creates Boxplot plot for all classesClassBoxplot
ClassErrorbarClassErrorbar
Class MDplot for Data w.r.t. all classesClassMDplot
PDE Plot for all classesClassPDEplot
Create PDE plot for all classes with maximum likelihoodClassPDEplotMaxLikeli
ClassplotClassplot
Combine vectors of various lengthscbind_fill CombineCols
Combine matrices of various lengthscbind_fill CombineRows
Crosstable plotCrosstable
Default color sequence for plotsDefaultColorSequence
Contour plot of densitiesDensityContour
Scatter plot with densitiesDensityScatter
DiagnosticAbility4ClassifiersDiagnosticAbility4Classifiers
Plot a classificated world mapDrawWorldWithCls
Dualaxis ClassplotDualaxisClassplot
DualaxisLinechartDualaxisLinechart
estimateDensity2DestimateDensity2D
The fan plotFanplot
Fundamental Data of the 1st Quarter in 2018FundamentalData_Q1_2018
GermanPostalCodesShapesGermanPostalCodesShapes
Google Maps with marked coordinatesGoogleMapsCoordinates
Heatmap for ClusteringHeatmap
Default color sequence for plotsHeatmapColors
Inspect BoxplotsInspectBoxplots
Inspect the CorrelationInspectCorrelation
Inspection of Distance-DistributionInspectDistances
Pairwise scatterplots and optimal histogramsInspectScatterplots
QQplot of Data versus Normalized DataInspectStandardization
Visualization of Distribution of one variableInspectVariable
Income Tax ShareITS
Jitters Unique ValuesJitterUniqueValues
Lsun3D inspired by FCPS [Thrun/Ultsch, 2020] introduced in [Thrun, 2018]Lsun3D
Minus versus Add plotMAplot
Mirrored Density plot (MD-plot)MDplot
Mirrored Density plot (MD-plot)for Multiple VectorsMDplot4multiplevectors
Robust Empirical Mean EstimationMeanrobust meanrobust
Muncipal Income Tax YieldMTY
Plot multiple ggplots objects in one panelMultiplot
OpposingViolinBiclassPlotOpposingViolinBiclassPlot
Optimal Number Of BinsOptimalNoBins
Pareto Density Estimation V3ParetoDensityEstimation
ParetoRadius for distributionsParetoRadius
PDEnormrobustPDEnormrobust
PDE plotPDEplot
The pie chartPiechart
Plot of a Pixel MatrixPixelmatrix PlotPixMatrix
3D plot of pointsPlot3D
PlotGraph2DPlotGraph2D
Plot of the Amount Of Missing ValuesPlotMissingvalues
Product-Ratio PlotPlotProductratio
P-Matrix colorsPmatrixColormap
QQplot with a Linear FitQQplot
Transforms the Robust Normalization backRobustNorm_BackTrafo
RobustNormalizationRobustNormalization
ROC plotROC
Shepard PDE scatterShepardDensityPlot ShepardDensityScatter
Draws a Shepard DiagramSheparddiagram
Signed LogSignedLog
Silhouette plot of classified data.Silhouetteplot
Slope ChartSlopechart
Calculate Pareto density estimation for ggplot2 plotsstat_pde_density
Pareto Density EstimationStatPDEdensity
Standard Deviation RobustStdrobust stdrobust
world_country_polygonsworld_country_polygons
plots a world map by country codesWorldmap
Plotting for 3 dimensional datazplot