Package 'ProjectionBasedClustering'

Title: Projection Based Clustering
Description: A clustering approach applicable to every projection method is proposed here. The two-dimensional scatter plot of any projection method can construct a topographic map which displays unapparent data structures by using distance and density information of the data. The generalized U*-matrix renders this visualization in the form of a topographic map, which can be used to automatically define the clusters of high-dimensional data. The whole system is based on Thrun and Ultsch, "Using Projection based Clustering to Find Distance and Density based Clusters in High-Dimensional Data" <DOI:10.1007/s00357-020-09373-2>. Selecting the correct projection method will result in a visualization in which mountains surround each cluster. The number of clusters can be determined by counting valleys on the topographic map. Most projection methods are wrappers for already available methods in R. By contrast, the neighbor retrieval visualizer (NeRV) is based on C++ source code of the 'dredviz' software package, and the Curvilinear Component Analysis (CCA) is translated from 'MATLAB' ('SOM Toolbox' 2.0) to R.
Authors: Michael Thrun [aut, cre, cph], Florian Lerch [aut], Felix Pape [aut], Tim Schreier [aut], Luis Winckelmann [aut], Kristian Nybo [cph], Jarkko Venna [cph]
Maintainer: Michael Thrun <[email protected]>
License: GPL-3
Version: 1.1.9
Built: 2024-11-18 04:09:47 UTC
Source: https://github.com/mthrun/projectionbasedclustering

Help Index


Projection Based Clustering

Description

The package is based on a conference talk [Thrun/Ultsch, 2017], see <DOI:10.13140/RG.2.2.13124.53124>. and [Thrun/Ultsch, 2020]. The abstract of the conference talk is as follows:

Many data mining methods rely on some concept of the dissimilarity between pieces of information encoded in the data of interest. These methods can be used for cluster analysis. However, no generally accepted definition of clusters exists in the literature [Hennig et al., 2015]. Here, consistent with Bouveyron et al., it is assumed that a cluster is a group of similar objects [Bouveyron et al., 2012]. The clusters are called natural because they do not require a dissection; instead, they are clearly separated in the data [Duda et al., 2001, Theodoridis/Koutroumbas, 2009, pp. 579, 600]. These clusters can be identified by distance or density based high-dimensional structures. Dimensionality reduction techniques are able to reduce the dimensions of the input space to facilitate the exploration of structures in high-dimensional data. If they are used for visualization, they are called projection methods. The generalized U*-matrix technique is applicable for these and can be used to visualize both distance- and density-based structures [Thrun 2018; Ultsch/Thrun, 2017]. The idea that the abstract U*-matrix (AU-matrix) can be used for clustering [Ultsch et al., 2016]. The distances required for hierarchical clustering are defined by the AU-matrix [Lötsch/Ultsch, 2014]. Using this distance we propose a clustering approach for every projection method based on the U*-matrix visualization of a topographic map [Thrun 2018; Thrun/Ultsch, 2017]. The number of clusters and the cluster structure can be estimated by counting the valleys in a topographic map [Thrun et al., 2016]. If the number of clusters and the clustering method are chosen correctly, then the clusters will be well separated by mountains in the visualization. Outliers are represented as volcanoes and can be interactively marked in the visualization after the automated clustering process.

Details

A comparison to 32 common clustering algorithms is provided in [Thrun/Ultsch, 2020].

Note

If you want to verifiy your clustering result externally, you can use Heatmap or SilhouettePlot of the CRAN package DataVisualizations.

Additionally you can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun, Felix Pape, Florian Lerch, Tim Schreier, Luis Winckelmann

References

[Thrun/Ultsch, 2017] Thrun, M.C., Ultsch, A.: Projection based Clustering, Conf. Int. Federation of Classification Societies (IFCS),DOI:10.13140/RG.2.2.13124.53124, Tokyo, 2017.

[Bouveyron et al., 2012] Bouveyron, C., Hammer, B., & Villmann, T.: Recent developments in clustering algorithms, Proc. ESANN, Citeseer, 2012.

[Duda et al., 2001] Duda, R. O., Hart, P. E., & Stork, D. G.: Pattern classification, (Second Edition ed.), Ney York, USA, John Wiley & Sons, ISBN: 0-471-05669-3, 2001.

[Hennig et al., 2015] Hennig, C., Meila, M., Murtagh, F., & Rocci, R.: Handbook of cluster analysis, New York, USA, CRC Press, ISBN: 9781466551893, 2015.

[Lötsch/Ultsch, 2014] Lötsch, J., & Ultsch, A.: Exploiting the Structures of the U-Matrix, in Villmann, T., Schleif, F.-M., Kaden, M. & Lange, M. (eds.), Proc. Advances in Self-Organizing Maps and Learning Vector Quantization, pp. 249-257, Springer International Publishing, Mittweida, Germany, 2014.

[Theodoridis/Koutroumbas, 2009] Theodoridis, S., & Koutroumbas, K.: Pattern Recognition, (Fourth Edition ed.), Canada, Elsevier, ISBN: 978-1-59749-272-0, 2009.

[Thrun et al., 2016] Thrun, M. C., Lerch, F., Lötsch, J., & Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Vol. 24, Plzen, http://wscg.zcu.cz/wscg2016/short/A43-full.pdf, 2016.

[Ultsch et al., 2016] Ultsch, A., Behnisch, M., & Lötsch, J.: ESOM Visualizations for Quality Assessment in Clustering, In Merényi, E., Mendenhall, J. M. & O'Driscoll, P. (Eds.), Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, January 6-8, 2016, (10.1007/978-3-319-28518-4_3pp. 39-48), Cham, Springer International Publishing, 2016.

[Ultsch/Thrun, 2017] Ultsch, A., & Thrun, M. C.: Credible Visualizations for Planar Projections, in Cottrell, M. (Ed.), 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), IEEE Xplore, France, 2017.

[Thrun/Ultsch, 2020] Thrun, M. C., & Ultsch, A.: Using Projection based Clustering to Find Distance and Density based Clusters in High-Dimensional Data, Journal of Classification, Vol. in press, Springer, DOI: 10.1007/s00357-020-09373-2, 2020.

Examples

data('Hepta')
#2d projection
# Visualizuation of GeneralizedUmatrix

projectionpoints=NeRV(Hepta$Data)
#Computation of Generalized Umatrix
library(GeneralizedUmatrix)
visualization=GeneralizedUmatrix(Data = Hepta$Data,projectionpoints)
TopviewTopographicMap(visualization$Umatrix,visualization$Bestmatches)
#or in 3D if rgl package exists
#plotTopographicMap(visualization$Umatrix,visualization$Bestmatches)

##Interactive Island Generation 
## from a tiled Umatrix (toroidal assumption)
## Not run: 
	Imx = ProjectionBasedClustering::interactiveGeneralizedUmatrixIsland(visualization$Umatrix,
	visualization$Bestmatches)
	#plotTopographicMap(visualization$Umatrix,visualization$Bestmatches, Imx = Imx)

## End(Not run)

# Automatic Clustering
LC=c(visualization$Lines,visualization$Columns)
# number of Cluster from dendrogram or visualization (PlotIt=TRUE)
Cls=ProjectionBasedClustering(k=7, Hepta$Data, 

visualization$Bestmatches, LC,PlotIt=TRUE)
# Verification
library(GeneralizedUmatrix)
TopviewTopographicMap(visualization$Umatrix,visualization$Bestmatches,Cls)
#or in 3D if rgl package exists
#plotTopographicMap(visualization$Umatrix,visualization$Bestmatches,Cls)

## Sometimes you can improve a Clustering interactivly or mark additional Outliers manually
## Not run: 
Cls2 = interactiveClustering(visualization$Umatrix, visualization$Bestmatches, Cls)

## End(Not run)

Curvilinear Component Analysis (CCA)

Description

CCA Projects data vectors using Curvilinear Component Analysis [Demartines/Herault, 1995],[Demartines/Herault, 1997].

Unknown values (NaN's) in the data: projections of vectors with unknown components tend to drift towards the center of the projection distribution. Projections of totally unknown vectors are set to unknown (NaN).

Usage

CCA(DataOrDistances,Epochs,OutputDimension=2,method='euclidean',

alpha0 = 0.5, lambda0,PlotIt=FALSE,Cls)

Arguments

DataOrDistances

Numerical matrix defined as either

Data, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,

or

Distances, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(dist(Data,method))

Epochs

Number of eppochs (scalar), i.e, training length

OutputDimension

Number of dimensions in the Outputspace, default=2

method

method specified by distance string. One of: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary'

alpha0

(scalar) initial step size, 0.5 by default

lambda0

(scalar) initial radius of influence, 3*max(std(D)) by default

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

A n by OutputDimension matrix containing coordinates of the projected points.

Note

Only Transfered from matlab to R. Matlabversion: Contributed to SOM Toolbox 2.0, February 2nd, 2000 by Juha Vesanto https://www.cis.hut.fi/projects/somtoolbox/

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Florian Lerch

References

[Demartines/Herault, 1997] Demartines, P., & Herault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on Neural Networks, Vol. 8(1), pp. 148-154. 1997.

[Demartines/Herault, 1995] Demartines, P., & Herault, J.: CCA:" Curvilinear component analysis", Proc. 15 Colloque sur le traitement du signal et des images, Vol. 199, GRETSI, Groupe d'Etudes du Traitement du Signal et des Images, France 18-21 September, 1995.

Examples

data('Hepta')
Data=Hepta$Data

Proj=CCA(Data,Epochs=20)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

Default color sequence for plots

Description

Defines the default color sequence for plots made within the Projections package.

Usage

data("DefaultColorSequence")

Format

A vector with 562 different strings describing colors for plots.


Adjacency matrix of the delaunay graph for BestMatches of Points

Description

Calculates the adjacency matrix of the delaunay graph for BestMatches (BMs) in tiled form if BestMatches are located on a toroid grid

Usage

Delaunay4Points(Points, IsToroid = TRUE,Grid=NULL,PlotIt=FALSE)

Arguments

Points

[1:n,1:3] matrix containing the BMKey, X and Y coordinates of the n, BestMatches NEED NOT BE UNIQUE, however, there is an edge in the Deaunay between duplicate points!

IsToroid

OPTIONAL, logical, indicating if BM's are on a toroid grid. Default is True

Grid

OPTIONAL, A vector of length 2, containing the number of lines and columns of the Grid

PlotIt

OPTIONAL, bool, Plots the graph

Details

as

Value

Delaunay[1:n,1:n] adjacency matrix of the Delaunay-Graph

Author(s)

Michael Thrun

References

[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, doctoral dissertation 2017, Springer, ISBN: 978-3-658-20539-3, Heidelberg, 2018.


Dijkstra SSSP

Description

Dijkstra's SSSP (Single source shortest path) algorithm:

gets the shortest path (geodesic distance) from source vertice(point) to all other vertices(points) defined by the edges of the adjasency matrix

Usage

DijkstraSSSP(Adj, Costs, source)

Arguments

Adj

[1:n,1:n] 0/1 adjascency matrix, e.g. from delaunay graph or gabriel graph

Costs

[1:n,1:n] matrix, distances between n points (normally euclidean)

source

int, vertice(point) from which to calculate the geodesic distance to all other points

Details

Preallocating space for DataStructures accordingly to the maximum possible number of vertices which is fixed set at the number 10001.

Value

ShortestPaths[1:n] vector, shortest paths (geodesic) to all other vertices including the source vertice itself

Note

runs in O(E*Log(V))

Author(s)

Michael Thrun

References

uses a changed code which is inspired by Shreyans Sheth 28.05.2015, see https://ideone.com/qkmt31


Hepta is part of the Fundamental Clustering Problem Suit (FCPS) [Thrun/Ultsch, 2020].

Description

clearly defined clusters, different variances

Usage

data("Hepta")

Details

Size 212, Dimensions 3, stored in Hepta$Data

Classes 7, stored in Hepta$Cls

References

[Thrun/Ultsch, 2020] Thrun, M. C., & Ultsch, A.: Clustering Benchmark Datasets Exploiting the Fundamental Clustering Problems, Data in Brief,Vol. 30(C), pp. 105501, DOI 10.1016/j.dib.2020.105501 , 2020.

Examples

data(Hepta)
str(Hepta)

Independent Component Analysis (ICA)

Description

Independent Component Analysis:

Negentropie: difference of entropy to a corresponding normally-distributed random variable J(y)=|E(G(y)-E(G(v)))|^2

Usage

ICA(Data,OutputDimension=2,Contrastfunction="logcosh",

Alpha=1,Iterations=200,PlotIt=FALSE,Cls)

Arguments

Data

numerical matrix of n cases in rows, d variables in columns, matrix is not symmetric.

OutputDimension

Number of dimensions in the Outputspace, default=2

Contrastfunction

Maximierung der Negentropie ueber geeignete geeignete Kontrastfunktion Default: 'logcosh' G(u)=1/a*log cosh(a*u) 'exp': G(u)=-exp(u^2/2)

Alpha

onstant with 1<=alpha<=2 used in approximation to neg-entropy when fun == "logcosh"

Iterations

maximum number of iterations to perform.

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio

Mixing

[1:OutputDimension,1:d] Mischungsmatrix s.d gilt Data=MixingMatrix*ProjectedPoints

Unmixing

Entmischungsmatrix with Data*Unmixing=ProjectedPoints

PCMatrix

pre-whitening matrix that projects data onto the first n.comp principal components.

Note

A wrapper for fastICA

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun

Examples

data('Hepta')
Data=Hepta$Data

Proj=ICA(Data)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

GUI for interactive cluster analysis

Description

This tool is an interactive shiny tool that visualizes a given generalized Umatrix and allows the user to select areas and mark them as clusters to improve a projection based clustering.

Arguments

Umatrix

[1:Lines,1:Columns] Matrix of Umatrix Heights

Bestmaches

[1:n,1:2] Array with positions of Bestmatches

Cls

[1:n] Classification of the Bestmatches

Details

Clicking on "Quit" returns the Cls vector to the workspace.

Value

List of

EnlargedUmatrix

[1:Lines,1:Columns] Matrix of Umatrix Heights taken four times and arranged in a square 2x2.

EnlargedBestmaches

[1:n,1:2] Array with positions of Bestmatches according to the enlarged umatrix.

EnlargedCls

[1:n] Classification of the Bestmatches according to the enlarged umatrix.

Umatrix

[1:Lines,1:Columns] Matrix of Umatrix Heights

Bestmaches

[1:n,1:2] Array with positions of Bestmatches

Cls

[1:n] Classification of the Bestmatches

TopView_TopographicMap

Plot of a topographic map.

Note

If you want to verifiy your clustering result externally, you can use Heatmap or SilhouettePlot of the CRAN package DataVisualizations.

Author(s)

Florian Lerch, Michael Thrun

References

[Thrun/Ultsch, 2017] Thrun, M.C., Ultsch, A.: Projection based Clustering, Conf. Int. Federation of Classification Societies (IFCS),DOI:10.13140/RG.2.2.13124.53124, Tokyo, 2017.

[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, doctoral dissertation 2017, Springer, Heidelberg, ISBN: 978-3-658-20539-3, doi:10.1007/978-3-658-20540-9, 2018.

Examples

data('Hepta')
#2d projection
# Visualizuation of GeneralizedUmatrix

projectionpoints=NeRV(Hepta$Data)
#Computation of Generalized Umatrix
library(GeneralizedUmatrix)
visualization=GeneralizedUmatrix(Data = Hepta$Data,projectionpoints)

## Semi-Automatic Clustering done interactivly in a  shiny gui
## Not run: 
Cls = interactiveClustering(visualization$Umatrix, visualization$Bestmatches)
##Plotting
plotTopographicMap(visualization$Umatrix,visualization$Bestmatches,Cls)

## End(Not run)

GUI for cutting out an Island.

Description

The toroid Umatrix is usually drawn 4 times, so that connected areas on borders can be seen as a whole. An island is a manual cutout of such a tiled visualization, that is selected such that all connected areas stay intact. This shiny tool allows the user to do this manually.

Usage

interactiveGeneralizedUmatrixIsland(Umatrix, Bestmatches=NULL, Cls=NULL)

Arguments

Umatrix

[1:Lines,1:Columns] Matrix of Umatrix Heights

Bestmatches

[1:n, 1:2] Matrix with positions of Bestmatches for n datapoints, first columns is the position in Lines and second column in Columns

Cls

Classification of the Bestmatches

Details

Clicking on "Quit" returns the Imx matrix to the workspace. Details can bee read in [Thrun et al, 2016, Thrun/Ultsch, 2017].

Value

Boolean Matrix that represents the island within the tiled Umatrix.

Note

This function is a depricated version of a function from the Umatrix packages created by Florian Lerch and Michael Thrun

Author(s)

Michael Thrun

References

[Thrun, et al.,2016] Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision,Plzen, 2016.

[Thrun/Ultsch, 2017] Thrun, M.C., Ultsch, A.: Projection based Clustering, Conf. Int. Federation of Classification Societies (IFCS),<DOI:10.13140/RG.2.2.13124.53124>, Tokyo, 2017.

Examples

data("Hepta")
Data=Hepta$Data
Cls=Hepta$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
#see also ProjectionBasedClustering package for other common projection methods

library(GeneralizedUmatrix)
resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
TopviewTopographicMap(resUmatrix$Umatrix,resUmatrix$Bestmatches,Cls)
#or in 3D if rgl package exists
#plotTopographicMap(resUmatrix$Umatrix,resUmatrix$Bestmatches,Cls)

##Interactive Island Generation 
## from a tiled Umatrix (toroidal assumption)

## Not run: 
	Imx = interactiveGeneralizedUmatrixIsland(resUmatrix$Umatrix,

	resUmatrix$Bestmatches)
	plotTopographicMap(resUmatrix$Umatrix,

	resUmatrix$Bestmatches, Imx = Imx)

## End(Not run)

Interactive Projection-Based Clustering (IPBC)

Description

An interactive clustering tool published in [Thrun et al., 2020] that uses the topographic map visualizations of the generalized U-matrix and a variety of different projection methods. This function receives a dataset and starts a shiny interface where one is able to choose a projection method and generate a plot.ly visualization of the topograhpic map [Thrun et al., 2016] of the generalized U-matrix [Ultsch/Thrun, 2017] combined with projected points. It includes capabilities for interactive clustering within the interface as well as automatic projection-based clustering based on [Thrun/Ultsch, 2020].

Usage

interactiveProjectionBasedClustering(Data, Cls=NULL)
  
  IPBC(Data, Cls=NULL)

Arguments

Data

The dataset [1:n,1:d] of n cases and d vriables with which the U-matrix and the projection will be calculated. Please see also the note below.

Cls

Optional: Prior Classification of the data for the [1:n] cases of k classes.

Details

To cluster data interactively, i.e., select specific data points and create a cluster), first generate the visualization. Thereafter, switch in the menu to clustering, hold the left mouse button and then frame a valley. Simple mouse clicks will not start the lasso functionality of plotly.

The resulting clustering is stored in Cls which is a numerical vector of the length n (number of cases) with the integer elements of numbers from 1 to k if k is the number of groups in the data. Each element of Cls as an unambigous mapping to a case of Data indicating by the rownames of Data. If Data has no rownames a vector from 1:n is generated and then Cls is named by it.

Value

Returns a List of:

Cls

[1:n] numerical vector of the clustering of the dataset for then cases of k clusters

Umatrix

[1:Lines,1:Columns] generalized Umatrix to be plotted, numerical matrix storing the U-heights, see [Thrun, 2018] for definition.

Bestmatches

[1:n,2] Matrix of GridConverted Projected Points [1:n, 1:2] called Bestmatches that defines positions for n datapoints, first columns is the position in Lines and second column in Columns

LastProjectionMethodUsed

name of last projection method that was used as a string

TopView_TopographicMap

The final plot generated by plot.ly when closing the tool

Note

Some dimensionality reduction methods will assume data without missing values, some other DR methods assume unique data points, i.e., no distance=0 for any two cases(rows) of data. In these cases the IPBC method will crash.

Author(s)

Tim Schreier, Felix Pape, Luis Winckelmann, Michael Thrun

References

[Ultsch/Thrun, 2017] Ultsch, A., & Thrun, M. C.: Credible Visualizations for Planar Projections, in Cottrell, M. (Ed.), 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), IEEE Xplore, France, 2017.

[Thrun/Ultsch, 2017] Thrun, M. C., & Ultsch, A. : Projection based Clustering, Proc. International Federation of Classification Societies (IFCS), pp. 250-251, Japanese Classification Society (JCS), Tokyo, Japan, 2017.

[Thrun/Ultsch, 2020] Thrun, M. C., & Ultsch, A.: Using Projection based Clustering to Find Distance and Density based Clusters in High-Dimensional Data, Journal of Classification, Springer, DOI: 10.1007/s00357-020-09373-2, 2020.

[Thrun et al., 2020] Thrun, M. C., Pape, F., & Ultsch, A.: Interactive Machine Learning Tool for Clustering in Visual Analytics, 7th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2020), pp. 672-680, DOI 10.1109/DSAA49011.2020.00062, IEEE, Sydney, Australia, 2020.

Examples

if(interactive()){
  data('Hepta')
  Data=Hepta$Data

  V=interactiveProjectionBasedClustering(Data)

  # with prior classification
  Cls=Hepta$Cls
  V=IPBC(Data,Cls)
}

Isomap

Description

Isomap procetion as introduced in 2000 by Tenenbaum, de Silva and Langford

Even with a manifold structure, the sampling must be even and dense so that dissimilarities along a manifold are shorter than across the folds. If data do not have such a manifold structure, the results are very sensitive to parameter values.

Usage

Isomap(Distances,k,OutputDimension=2,PlotIt=FALSE,Cls)

Arguments

Distances

Symmetric [1:n,1:n] distance matrix, e.g. as.matrix(dist(Data,method))

k

number of k nearest neighbors, if the data is fragmented choose an higher k

OutputDimension

Number of dimensions in the output space, default = 2

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. If OutputDimension > 2 only the first two dimensions will be shown.

Cls

Optional and only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

ProjectedPoints[1:n,OutputDimension] n by OutputDimension matrix containing coordinates of the Projection: A matrix of the fitted configuration..

Note

A wrapper enabling a planar projection of the manifold learning method based on the isomap of the package vegan

if Data fragmented choose an higher k

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun

Examples

data('Hepta')
Data=Hepta$Data

Proj=Isomap(as.matrix(dist(Data)),k=7)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

Kruskal stress calculation

Description

Calculates the stress as defined by Kruskal for 2 distance matrices

Usage

KruskalStress(InputDistances, OutputDistances)

Arguments

InputDistances

Distance matrix of the original Data

OutputDistances

Distance matrix of the projected Data

Details

An short overview of different types of quality measures can be found in [Thrun, 2018, p.68, Fig. 6.3] (doi:10.1007/978-3-658-20540-9).

Value

A single numerical representing the Kruskal stress of the distance matrices.

Author(s)

Felix Pape


Multidimensional Scaling (MDS)

Description

Classical multidimensional scaling of a data matrix. Also known as principal coordinates analysis

Usage

MDS(DataOrDistances,method='euclidean',OutputDimension=2,PlotIt=FALSE,Cls)

Arguments

DataOrDistances

Numerical matrix defined as either

Data, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,

or

Distances, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(dist(Data,method))

method

method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary'

OutputDimension

Number of dimensions in the Outputspace, default=2

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization.

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio

Eigenvalues

the eigenvalues of MDSvalues*MDSvalues'

Stress

Shephard-Kruskal Stress

Note

A wrapper for cmdscale

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun

Examples

data('Hepta')
Data=Hepta$Data

Proj=MDS(Data)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

Neighbor Retrieval Visualizer (NeRV)

Description

Projection is done by the neighbor retrieval visualizer (NeRV)

Usage

NeRV(Data, lambda = 0.1, neighbors = 20, iterations = 10, 

cg_steps = 2, cg_steps_final = 40, randominit = T, OutputDimension = 2,

PlotIt = FALSE, Cls)

Arguments

Data

Numerical matrix of the Data to be projected, [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features

lambda

Optional: Controls the trustworthiness-continuity tradeoff. Default = 0.1

neighbors

Optional: Set the number of nearest neighbours that each point should have. Should be positive. Default = 20

iterations

Optional: The number of iterations to perform. Default = 10

cg_steps

Optional: The number of conjugate gradient steps to perform per iteration in NeRV's optimization scheme. Default = 2

cg_steps_final

Optional: The number of conjugate gradient steps to perform on the final iteration in NeRV's optimization scheme. Default = 40

randominit

Optional: TRUE: Random Initialization (default), FALSE: PCA initializiation

OutputDimension

Optional: Number of dimensions in the Outputspace, default=2

PlotIt

Optional: Should the projected points be plotted? Default: FALSE. Note: this is only usefull if OutputDimension = 2.

Cls

Optional: Vector containing the number of the class for each row in Data. This is only used to color the points according to their classes if PlotIt = T

Details

Uses the NeRV projection with matrix Data and lambda. Lambda controls the trustworthiness-continuity tradeoff.

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

OutputDimension-dimensional matrix of projected points

Note

PCA initialization changes form the original C++ Sourcecode of https://research.cs.aalto.fi/pml/software/dredviz/ to the R version of the projections package. Other changes are made only regarding data types of Rcpp in comparison to the original C++ Source code.

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun, Felix Pape

References

Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and Samuel Kaski. Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization. Journal of Machine Learning Research, 11:451-490, 2010.

Jarkko Venna and Samuel Kaski. Nonlinear Dimensionality Reduction as Information Retrieval. In Marina Meila and Xiaotong Shen, editors, Proceedings of AISTATS 2007, the 11th International Conference on Artificial Intelligence and Statistics. Omnipress, 2007. JMLR Workshop and Conference Proceedings, Volume 2: AISTATS 2007.

Examples

data('Hepta')
Data=Hepta$Data
## Not run: 
Proj=NeRV(Data)
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

Principal Component Analysis (PCA)

Description

Performs a principal components analysis on the given data matrix projection=SammonsMapping(Data)

Usage

PCA(Data,OutputDimension=2,Scale=FALSE,Center=FALSE,PlotIt=FALSE,Cls)

Arguments

Data

numerical matrix of data: n cases in rows, d variables in columns

OutputDimension

Number of dimensions in the Outputspace, default=2

Scale

a logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE for consistency with S, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns of x can be supplied. The value is passed to scale.

Center

a logical value indicating whether the variables should be shifted to be zero centered. Alternately, a vector of length equal the number of columns of x can be supplied. The value is passed to scale

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio

Rotation

the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors)

sDev

the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix)

TransformedData

matrix with PCA transformed Data

Center

the centering used, or FALSE

Scale

the scaling used, or FALSE

Note

A wrapper for prcomp

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun

Examples

data('Hepta')
Data=Hepta$Data

Proj=PCA(Data)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

Plot Projected Points

Description

plots XY data colored by Cls with ggplot2

Usage

PlotProjectedPoints(Points,Cls,BMUorProjected=F,PlotLegend=FALSE,

xlab='X',ylab='Y',main="Projected Points",PointSize=2.5)

Arguments

Points

[1:n,1:2] xy cartesian coordinates of a projection

Cls

numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

BMUorProjected

Default ==FALSE, If TRUE assuming BestMatches of ESOM instead of Projected Points

PlotLegend

...

xlab

Optional: Label of the x axis

ylab

Optional: Label of the y axis

main

Optional: title

PointSize

Optional: size of points

Value

ggobject of ggplot2

Author(s)

Michael Thrun


Polar Swarm (Pswarm)

Description

Swarm-based Projection method using game theory published in [Thrun/Ultsch, 2020].

Usage

PolarSwarm(DataOrDistances, method = "euclidean", PlotIt = FALSE, Cls)

Arguments

DataOrDistances

Numerical matrix defined as either

Data, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,

or

Distances, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(parallelDist::parallelDist(Data,method))

method

If Data is given the method to computing the distances can be specified here. Please see the documentation of package parallelDist for the types that are possible.

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown

Cls

Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

By exploting swarm intelligence and game theory no parameter have to be set.

Value

List of

ProjectedPoints

[1:n,2], n by 2 matrix containing coordinates of the Projection

ModelObject

output of Pswarm

Author(s)

Michael Thrun

References

[Thrun/Ultsch, 2020] Thrun, M. C., & Ultsch, A.: Swarm Intelligence for Self-Organized Clustering, Artificial intelligence, Vol. in press, pp. doi 10.1016/j.artint.2020.103237, 2020.

See Also

Pswarm

Examples

data('Hepta')
Data=Hepta$Data

Distances=as.matrix(dist(Data))
Proj=PolarSwarm(Data)
## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)
## End(Not run)

Projection to Bestmatches

Description

Transformation of projected points to bestmatches defined by generalized Umatrix

Usage

Projection2Bestmatches(ProjectedPoints)

Arguments

ProjectedPoints

[1:n,1:2] n projected points in two-dimensional space.

Details

It is assumed that an unambiguous assignment between projected points and data points is given.

Value

Bestmatches

[1:n,1:2] Positions of GridConverted Projected Points, which can be used for the generalized Umatrix, to the predefined Grid by Lines and Columns. First Columns has the content of the Line No and second Column of the Column number.

LC

[1:2] vector if Line No. and ColumnNo. which defines the size of the grid of the generalized Umatrix

Note

Details of the equations used are written down in [Thrun, 2018, p. 47].

Author(s)

Michael Thrun

References

[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, doctoral dissertation 2017, Springer, Heidelberg, ISBN: 978-3-658-20539-3, doi:10.1007/978-3-658-20540-9, 2018.

See Also

XYcoords2LinesColumns

Examples

data('Hepta')
ProjList=MDS(Hepta$Data)
trafo=Projection2Bestmatches(ProjList$ProjectedPoints)

Automatic Projection-based Clustering (PBC) [Thrun/Ultsch, 2020]

Description

Three steps are necessary for PBC. First, a projection method has to be chosen to generate projected points of high-dimensional data points. Second, the generalized U*-matrix has to be applied to the projected points by using a simplified emergent self-organizing map (ESOM) algorithm which is an unsupervised neural network [Thrun, 2018]. The resulting generalized U-matrix can be visualized by the topographic map [Thrun et al., 2016]. Third, the clustering itself is built on top of the generalized U-matrix using the concept of the abstract U-Matrix and shortest graph paths using ShortestGraphPathsC.

Usage

ProjectionBasedClustering(k, DataOrDistances, BestMatches, LC,

StructureType = TRUE, PlotIt = FALSE, method = "euclidean")

Arguments

k

number of clusters, how many to you see in the 3d landscape?

DataOrDistances

Numerical matrix that will be used for clustering with one DataPoint per row, defined as either as

Data, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,

or

Distances, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(dist(Data,method))

BestMatches

[1:n,1:2] Matrix with positions of Bestmatches=ProjectedPoints, one matrix line per data point

LC

grid size c(Lines,Columns)

StructureType

Optional, bool; =TRUE: compact structure of clusters assumed, =FALSE: connected structure of clusters assumed. For the two options vor Clusters, see [Thrun, 2017] or Handl et al. 2006

PlotIt

Optional, bool, Plots Dendrogramm

method

Optional, distance method used in parallelDist if Data given.

Details

ProjectionBasedClustering is a flexible and robust clustering framework based on a chose projection method and projection method a parameter-free high-dimensional data visualization technique. The visualization combines projected points with a topographic map with hypsometric colors, defined by the generalized U-matrix (see package GeneralizedUmatrix function GeneralizedUmatrix).

The clustering method with no sensitive parameters is done in this function and the algorithm is introduced in detail in [Thrun/Ultsch, 2020]. The clustering can be verified by the visualization and vice versa. If you want to verifiy your clustering result externally, you can use Heatmap or SilhouettePlot of the CRAN package DataVisualizations.

If parallelDist is not installed, function automatically falls back to dist.

Value

Cls [1:n] vector with selected classes of the bestmatches. You can use plotTopographicMap(Umatrix,Bestmatches,Cls) for verification.

Note

Often it is better to mark the outliers manually after the prozess of clustering; use in this case the visualization plotTopographicMap of the package GeneralizedUmatrix. If you would like to mark the outliers interactivly in the visualization use the interactiveClustering function.

Author(s)

Michael Thrun

References

[Thrun et al., 2016] Thrun, M. C., Lerch, F., Lötsch, J., & Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Vol. 24, Plzen, http://wscg.zcu.cz/wscg2016/short/A43-full.pdf, 2016.

[Thrun/Ultsch, 2017] Thrun, M.C., Ultsch, A.: Projection based Clustering, Conf. Int. Federation of Classification Societies (IFCS),DOI:10.13140/RG.2.2.13124.53124, Tokyo, 2017.

[Thrun/Ultsch, 2020] Thrun, M. C., & Ultsch, A.: Using Projection based Clustering to Find Distance and Density based Clusters in High-Dimensional Data, Journal of Classification, Vol. in press, Springer, DOI: 10.1007/s00357-020-09373-2, 2020.

Examples

data('Hepta')
#Step I: 2d projection
projectionpoints=NeRV(Hepta$Data)

#Step II (Optional): Computation of Generalized Umatrix
library(GeneralizedUmatrix)
visualization=GeneralizedUmatrix(Data = Hepta$Data,projectionpoints)
# Visualizuation of GeneralizedUmatrix
library(GeneralizedUmatrix)
TopviewTopographicMap(visualization$Umatrix,visualization$Bestmatches)
#or in 3D if rgl package exists
#plotTopographicMap(visualization$Umatrix,visualization$Bestmatches)

# Step III: Automatic Clustering
trafo=Projection2Bestmatches(projectionpoints)
# number of Cluster from dendrogram  (PlotIt=T) or visualization above
Cls=ProjectionBasedClustering(k=7, Hepta$Data, 

trafo$Bestmatches, trafo$LC,PlotIt=TRUE)

# Verification of Clustering
TopviewTopographicMap(visualization$Umatrix,visualization$Bestmatches,Cls)
#or in 3D if rgl package exists
#plotTopographicMap(visualization$Umatrix,visualization$Bestmatches,Cls)

Projection Pursuit

Description

In the absence of a generative model for the data the algorithm can be used to find the projection pursuit directions. Projection pursuit is a technique for finding 'interesting' directions in multidimensional datasets

Usage

ProjectionPursuit(Data,OutputDimension=2,Indexfunction="logcosh",

Alpha=1,Iterations=200,PlotIt=FALSE,Cls)

Arguments

Data

array of data: n cases in rows, d variables in columns, matrix is not symmetric or distance matrix, in this case matrix has to be symmetric

OutputDimension

Number of dimensions in the Outputspace, default=2

Indexfunction

Criterium for Minimization:

default: 'logcosh' G(u)=1/a*log cosh(a*u) (ICA) 'exp': G(u)=-exp(u^2/2) 'kernel' 1/(1* pi )*exp(r/2)

Alpha

constant with 1<=alpha<=2 used in approximation to neg-entropy when fun == "logcosh"

Iterations

maximum number of iterations to perform.

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio

Note

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun


Sammons Mapping

Description

Improved MDS thorugh a normalization of the Input space

Usage

SammonsMapping(DataOrDistances,method='euclidean',OutputDimension=2,PlotIt=FALSE,Cls)

Arguments

DataOrDistances

Numerical matrix defined as either

Data, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,

or

Distances, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(dist(Data,method))

method

method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary'

OutputDimension

Number of dimensions in the Outputspace, default=2

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization.

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio

Stress

Shephard-Kruskal Stress

Note

A wrapper for sammon

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun

Examples

data('Hepta')
Data=Hepta$Data

Proj=SammonsMapping(Data)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

Shortest GraphPaths = geodesic distances

Description

Dijkstra's SSSP (Single source shortest path) algorithm, from all points to all points

Usage

ShortestGraphPathsC(Adj, Cost)

Arguments

Adj

[1:n,1:n] 0/1 adjascency matrix, e.g. from delaunay graph or gabriel graph

Cost

[1:n,1:n] matrix, distances between n points (normally euclidean)

Details

Vertices are the points, edges have the costs defined by weights (normally a distance). The algorithm runs in runs in O(n*E*Log(V)), see also [Jungnickel, 2013, p. 87]. Further details can be foubd in [Jungnickel, 2013, p. 83-87].

Value

ShortestPaths[1:n,1:n] vector, shortest paths (geodesic) to all other vertices including the source vertice itself from al vertices to all vertices, stored as a matrix

Note

require C++11 standard (set flag in Compiler, if not set automatically)

Author(s)

Michael Thrun

References

[Dijkstra, 1959] Dijkstra, E. W.: A note on two problems in connexion with graphs, Numerische mathematik, Vol. 1(1), pp. 269-271. 1959.

[Jungnickel, 2013] Jungnickel, D.: Graphs, networks and algorithms, (4th ed ed. Vol. 5), Berlin, Heidelberg, Germany, Springer, ISBN: 978-3-642-32278-5, 2013.

[Thrun/Ultsch, 2017] Thrun, M.C., Ultsch, A.: Projection based Clustering, Conf. Int. Federation of Classification Societies (IFCS),DOI:10.13140/RG.2.2.13124.53124, Tokyo, 2017.

See Also

DijkstraSSSP


T-distributed Stochastic Neighbor Embedding (t-SNE)

Description

T-distributed Stochastic Neighbor Embedding res = tSNE(Data, KNN=30,OutputDimension=2)

Usage

tSNE(DataOrDistances,k,OutputDimension=2,Algorithm='tsne_cpp',

method="euclidean",Whitening=FALSE, Iterations=1000,PlotIt=FALSE,Cls,...)

Arguments

DataOrDistances

Numerical matrix defined as either

Data, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,

or

Distances, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(dist(Data,method))

k

number of k nearest neighbors=number of effective nearest neighbors("perplexity"); Important parameter. If not given, settings of packages of t-SNE will be used depending Algorithm

OutputDimension

Number of dimensions in the Outputspace, default=2

Algorithm

tsne_cpp': T-Distributed Stochastic Neighbor Embedding using a Barnes-HutImplementation in C++ of Rtsne

'tsne_r': pure R implementation of the t-SNE algorithm of of tsne

method

method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary'

Whitening

A boolean value indicating whether the matrix data should be whitened (tsne_r) or if pca should be used priorly (tsne_cpp)

Iterations

maximum number of iterations to perform.

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown

Cls

[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

...

Further arguments passed on to either 'Rtsne' or 'tsne'

Details

An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).

Value

List of

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projection

ModelObject

NULL for tsne_r, further information if tsne_cpp is selected

Note

A wrapper for Rtsne

or for tsne

You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.

Author(s)

Michael Thrun

Examples

data('Hepta')
Data=Hepta$Data

Proj=tSNE(Data,k=7)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)

Uniform Manifold Approximation and Projection

Description

Uniform manifold approximation and projection is a technique for dimension reduction. The algorithm was described by [McInnes et al., 2018].

Usage

UniformManifoldApproximationProjection(DataOrDistances, k,

Epochs,OutputDimension=2,Algorithm='umap_pkg',PlotIt=FALSE,Cls,...)

Arguments

DataOrDistances

Numerical matrix defined as either

Data, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,

or

Distances, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(dist(Data,method))

k

number of k nearest neighbors, Important parameter, if not given, settings of package umap will be used, default of package umap is currently 15

Epochs

Number of eppochs (scalar), i.e, training length, default of package umap is currently 200

OutputDimension

Number of dimensions in the Outputspace, default=2

Algorithm

"umap_pkg": provides an interface for two implementations. One is written from scratch other one requires python umap

"uwot_pkg": complete re-implementation in R (and C++, via the 'Rcpp' package) of uwot

PlotIt

Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown

Cls

Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.

...

one of the other 21 parameters that can be specified, please see umap.defaults of package umap for details or parameters to be set in package uwot depending on the choice of Algorithm.

Details

To the knowledge of the author of this function no peer-reviewed publication of the method exists. Use with greate care.

Value

List of

ProjectedPoints

[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projection

ModelObject

output of umap or of package uwot depending on Algorithm

Setting

specific settings used in UniformManifoldApproximationProjection

Note

Uniform Manifold Approximation and Projection and U-matrix [Ultsch/Siemon, 1990] are both sometimes abbreviated with Umap. Hence the abbreveviation is omitted here.

Author(s)

Michael Thrun

References

[McInnes et al., 2018] McInnes, L., Healy, J., & Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction, arXiv preprint arXiv:1802.03426, 2018.

[Ultsch/Siemon, 1990] Ultsch, A., & Siemon, H. P.: Kohonen's Self Organizing Feature Maps for Exploratory Data Analysis, International Neural Network Conference, pp. 305-308, Kluwer Academic Press, Paris, France, 1990.

See Also

umap of umap

umap of uwot

Examples

data('Hepta')
Data=Hepta$Data

Proj=UniformManifoldApproximationProjection(Data)

## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)

## End(Not run)